

Children first-Aspire-Challenge-Achieve

Aspire: To be the best I can be in everything that I try to do. To use the adults and resources available both at school and at home, to aspire for personal excellence and professional competence.

Challenge: To aim high, to push my limits to be able to strive for the highest possible achievements. To make every minute count to by maximising all learning opportunities both at school and at home. To seek challenge and to use my thinking tools to develop my thinking and push myself forward. To be responsible and in control of my own destiny. To be a skilled, independent, reflective learner.

Achieve: To demonstrate the highest levels of thinking and habits. To question, to challenge, to think independently and interdependently to achieve my personal academic aims. To be proud of who I am and what I achieve.

'You are who you choose to be!'

Т6	T1	T2	Т3	Τ4	Target

Term 1	Term 2	Term 3	Term 4	Target
Arithmetic	Arithmetic	Arithmetic	Arithmetic	Arithmetic
Paper 1				
Paper 2				
Total	Total	Total	Total	Total

Number and Place value

M1a: Can read, write and order whole numbers up to 10,000,000

Place value is the number system that we use to describe the position of each digit within a number.

Whole numbers are numbers that do NOT include fractions and decimals.

Millions	Hundreds of Thousands	Tens of Thousands	Thousands	Hundreds	Tens	Ones
М	HTh	TTh	Т	Н	Т	Ø

We can use this model of place value to help us read, write and order whole numbers up to 10,000,000.

Read 5683

Т	Н	Т	Ø	=5000+ 600+ 80+	5 thousand, 6 hundred and eighty-three	five thousand, six hundred and eighty-three
5	6	8	3	3		

Read **467293**- to help read the number count back three digits from the right and place a comma. 467,293

HTh	TTh	Т	Н	Т	Ø		4 hundred and 67	Four hundred and sixty-seven thousand, two
4	6	7	2	9	3	=400,000+ 60,000+ 7,000+ 200+ 90+ 3	thousand, 2 hundred and 93	hundred and ninety-three.

Ordering Whole Numbers-

Note: you should be able to order whole numbers with up to 5 digits.

Let's look at an example with 4 digit numbers.

Put these numbers in ascending order: 4521, 2451, 5124, 2154, 5214

Ascending means smallest to biggest.

Let's look at the thousands column. There are two numbers with 2 thousands: 2451 and 2154. We now need to look at the hundreds column. We can see that 2451 has 4 hundreds but 2154 has only 1 hundred so it is smaller. The next smallest number is 4521. We then have 2 numbers with 5 in the thousands column. 5124 and 5214. We can see that 5214 is bigger as it has 2 hundreds. So, our numbers in ascending order are 2154, 2451, 4521, 5124, 5214

Hint: When answering questions such as this, make sure your final list has all the numbers and none have been left out.

Look at numbers as a whole

What is the biggest number? In this case it is a thousand number- therefore you need to think about place value up to Thousands.

Look at numbers in place value order-Thousands-Hundreds-Tens-Ones

M1b: Can read, write and order numbers up to 3 decimal places

Remember: When working with decimals, it is very important that you know and understand the place value of numbers.

Thousan ds (1000)	Hundred s (100)	Tens (10)	Ones (1)		Tenth s $(\frac{1}{10})$	Hundredth s $(\frac{1}{100})$	Thousandth s $(\frac{1}{1000})$	For example, we can use this chart to see that the number 32.457 is made up of: 3 tens, 2 ones, 4 tenths (or 4/10 or 0.4), 5 hundredths (or 5/100 or
		3	2	•	4	5	7	This number is read or written in words as thirty two point four five seven.

Read 21.098 - This number is read or written in words as twenty one point zero nine eight.

We are sometimes given decimal numbers written in words and we have to read, understand the number and write it in figures. Let's look at some examples:

Write forty nine point zero nine four in figures	This is written in figures as 49.094
Write thirty point two zero eight in figures	This is written in figures as 30.208

We will sometimes be asked questions to show that we understand place value. Let's look at an example:

Write this total as a decimal	$4 + \frac{4}{2} - \frac{2}{2}$	We can see from our place value chart that this
	10 100	number will be 4.42

Write a number in the box to make this correct:

7.645 = 7 + 0.6 + 🗆 + 0.005

	10	100	1000
	Tenths	Hundredths	Thousandths
,	0.6	0.04	0.005
	-	<i>Tenths</i>	TenthsHundredths.0.60.04

We know that the number 7.645 is 7 ones, 6 tenths, 4 hundredths and 5 thousandths or 7.645 = 7 + 0.6 + 0.04 + 0.005 Therefore the missing number is 0.04.

Ordering Decimals

5

5

.

Remember: When working with decimals it is very important that you know and understand the place value of numbers.

Thousan ds (1000)	Hur s (1	idred 100)	Tens (10)	One s (1)	•	Tenth s $\left(\frac{1}{10}\right)$	Hundredth s $\left(\frac{1}{100}\right)$	Thousandth s $(\frac{1}{1000})$	For example, w made up of:	ve can use this chart to se	e that the	numl	oer 32.4	57 is
			3	2		4	5	7	3 tens, 2 on	es, 4 tenths (or 4/10), 5 h thousandths (or 7	undredth 7/1000).	s (or	5/100) a	nd 7
We can use	e this un	derstar	nding of pl	ace valu	e to l	help us ord	ler decimal nur	nbers.						
To answer	r this qu	estion	let's start	by looki	<i>5.5.</i>	<i>1,</i>	<i>3.75,</i>	7.35,	<i>5.73,</i>	3.77	75 and 3	77		
Let	t's first le	ook at	3.75:	by looki	ng at	the ones.				est number of ones. <i>J.</i>	75 and 5	. / /		
ones	$\frac{1}{10}$	$\frac{1}{100}$									or	es	$\frac{1}{10}$	$\frac{1}{100}$
3	. 7	5	Look at	the who	le nu	mber first-	the smallest v	vhole number is	3.		3	•	7	5
3	. 7	7	They bo	oth have	0.7 1	tenths					3	•	7	7
7	. 3	5	We ther	n look at	the l	hundredths	s column, one l	has 0.05 and the	e other 0.07 - th	erefore 3.75 is smaller.	5	•	5	1
5	. 7	3	The nes therefor	t smalles e 5.51 is	st lar s sma	ge number aller.	is 7. We then	look at the tenth	ns column. One	has 0.7 and one has 0.5	5- 5	•	7	3

7

3

5

1 The final number is 7.35

The decimal numbers in order from smallest to largest will be: 3.75, 3.77, 5.51, 5.73, 7.35

Let's now try to order decimal numbers which include thousandths digits.

Put the numbers below in order from largest to smallest :	7.600	7.675	7.67 <mark>0</mark>	7.556	6.776
---	-------	-------	---------------------	-------	-------

Add in 0s so that each number has the same digits

To order these decimals, let's first put them all in the correct column in the place value table:

Writing them in the correct columns will help us compare the size of the numbers.

7	•	6	0	0
7	•	6	7	5
7	•	6	7	0
7	•	5	5	6
6	•	7	0	6

Starting with comparing the ones, it is clear that **6.776** will be the **smallest** number as that is the only number which hasn't got 7 ones. We know therefore that 6.776 will come last on our list. (Remember, the question this time asks us to order from **largest** to **smallest**. Sometimes, it is easier to start with looking for the smallest numbers and then writing the numbers in reverse.)

To find the largest of the remaining numbers, let's first look down the **tenths** column. The top three numbers have **6** in the **tenths column** but **7.556** only has **5** in the **tenths column**. Therefore, **7.556** is smaller and will be the next smallest number on our list.

We now need to compare the remaining numbers: 7.600, 7.675 and 7.670

We have already seen that the three numbers have **7 ones** and **6 tenths**. We therefore now need to look at the hundredths column. **7.675** and **7.67** both have **7** in the hundredths column but **7.6** has nothing in the hundredths column. In other words, **7.6** has **0 hundredths** and is smaller than 7.675 and 7.67.

Lastly, if we compare 7.675 and 7.67, we can see that 7.675 is larger because 7.675 has 5 thousandths but 7.67 has 0 thousandths.

Another method is to write each of the numbers out with the same number of decimal places to show that there is nothing in these place value columns: **7.675**, **7.670**, **7.600**, **7.556**, **6.776**

M1c: Can round any whole number to the nearest 10, 100 and 1000

	Round	l to the neare	est 10		Round to	the nearest	100		Round to t	he nearest 2	L000	
	What is 5,643 rou	nded to the r	nearest 10?	Wh	at is 5,643 rou	nded to the	nearest 100?	What	is 5,643 round	led to the n	earest 1,000?	
	When rounding to look at the digit in 3 is less tha	the nearest : the ones colu 564 3 in <mark>5</mark> so we rou	10, we need to umn. und down .	When look a	When rounding to the nearest 100, we need to look at the digits in the tens column. 5643 40 is less than 50 so we round down.				When rounding to the nearest 1,000, we look at the digits in the hundreds column. 5643 600 is more than 500 so we round up.			
	5,643 rounded	to the neare	st 10 is 5,640.	5,64	13 rounded to	the nearest	100 is 5,600.	5,64	3 rounded to t	he nearest 1	1000 is 6000.	
	Note: Multiples of This is a good way have rounded to t Using numbe	f 10 end in at of checking o he correct mo er lines can he	least one zero . quickly that you ultiple. el p to visualise v	Note: zeros. that yo	Note: Multiples of 100 end in at least two zeros. This is a good way of checking quickly that you have rounded to the correct multiple.				Note: Multiples of 1000 end in at least three zeros. This is a good way of checking quickly that you have rounded to the correct multiple 0.100 or 1000			
5640	5641	5642	5643	5644	5645	5646	5647	5648	5649	5650	What is 7,500 rounded to the nearest 1,000? Note: When a number lies	
5600	5610	5620	5630	5640	5650	5660	5670	5680	5690	5700	exactly half way between, we round up. In this example 7,500 is exactly half way between 7,000	
5000	5100	5200	5300	5400	5500	5600	5700	5800	5900	6000	and 8,000 so we round up. 7,500 rounded to the nearest 1,000 is 8,000.	

M1d: Can round decimals to the nearest whole number and to one or two decimal places

	Round to the	e nearest wh	ole number		Round to t	the nearest	$\frac{1}{10}$		Round to th	ne nearest $\frac{1}{100}$	
	When rounding to we look at the ten	the nearest ths column.	whole number,	When at the	rounding to t digit in the hu	he nearest to Indredths co	enth, we look lumn.	When look at	rounding to th the digit in th	e nearest hundredth, we e thousandths column.	
	What is 19.7 rou 7 tenths is more th 19.7 rounded to th 20	unded to the number? nan <mark>5 tenths</mark> ne nearest w	nearest whole so we round up. hole number is	What 8 hund round 5.2	<i>is 5.28 rounde</i> dredths is mor up. 28 rounded to	ed to the nea e than <mark>5 hun</mark> the nearest	rest tenth? adredths so we tenth is 5.3	What is 6.392 rounded to the nearest hundredth? 2 thousandths is less than 5 thousandths so round down. 6.392 rounded to the nearest hundredth is 6.39			
	What is 25.68 ro	unded to the number?	e nearest whole					The au	estion may be	nhrased differently For	
	6 tenths is more th 25.68 rounded to What is 148.39 ro 3 tenths is less that down. 148.39 rounded t	nan 5 tenths the nearest 26 ounded to th number? In 5 tenths so o the neares is 148	so we round up. whole number is e nearest whole o we round t whole number	The qu examp <i>place?</i> We sti We, th hundr 2 tent down. 3.8	uestion may be ole: <i>What is 3.8</i> Il need to rour herefore, look a edths column hs is less than B2 rounded to	e phrased dif 82 rounded t nd to the nea at the digit ir 5 tenths so w one decimal	ferently. For to one decimal arest tenth. In the we round place is 3.8	examp decima M hund 5 thou up. 12.345	le: What is 12. al places? Ve still need to redth. We, the the thous sandths is exa 5 rounded to t	345 rounded to two round to the nearest erefore, look at the digit in andths column. ctly halfway so we round wo decimal places is 12.3	
19	19.1	19.2	19.3	19.4	19.5	19.6	19.7	19.8	19.9	20	
4			• ↓							→	
	5 1	5.2	53	 5 /I	 5 5	56	 _ 7	 	 E 0		

M1e: Can use place value to multiply whole numbers by 10, 100 or 1000

When you multiply by 10 the original number gets 10 times bigger.

Hundreds Tens Ones	9 × 10 - 90	7 🚄	2 🥌	5 🥌	0
9	The 9 moves one place value column to the left		725 v 10	- 7250	
9 0		All digits me	ove one place v	- 7250 value column to	o the left

Thousands

Hundreds

7

Tens

2

Ones

5

When we multiply by 10, each digit moves one place to the left: The Ones digit moves to the Tens column, Tens moves to the Hundreds column etc. The space in the column is filled with a 0, which is called a place holder.

		Multiply	ing by 100		Multiplying by 1000							
When we m	nultiply by 1	00, each digit	moves <u>two</u>	<mark>places</mark> to th	e left and the	When we multiply by 1,000 , each digit moves three places to the left and						
spaces in th	ie columns a	re filled with	a 0 , the <mark>plac</mark>	e holder.		the space	s in the col	umns are f	illed with a	a 0 , the p l	ace holder	
Thousands	Hundred	ls Tens	Ones					75	x 1000 =75	5,000		
		2	5	25 x 1	100 = 2,500	HTh	TTh	T	h	Н	Т	Ø
2 🥌	5	0	0				\leftarrow				7	5
							7	5	5	0	0	0
		5603 x 10	0 = 560,300					456 x	x 1000 = 4	56,000		
HTH	ттн	Th	Н	Т	Ø	М	HTh	TTh	Th	Н	Т	Ø
		5	6	0	3		\leftarrow	- ←		5	6	7
5	6	0	3	0	0		5	6	7	0	0	0

M1g: Can use place value to divide whole numbers by 10, 100 or 1000

When you divide by 10 the original number gets 10 times smaller.

Hundreds	Tens	Ones
	9 🔪	0
		9

 $90 \div 10 = 9$ The 9 moves one place value column to the right

Н	Т	Ø		1/10
	7	2	•	
	N	7	1	2

 $72 \div 10 = 7.2$ All digits move one place value column to the right

When we divide by 10, we are making the number smaller so each digit moves 1 place to the right. Thousands move to the hundreds column, hundreds move to the tens column, tens move to the Ones column, Ones move to the tenths column. THE DECIMAL POINT DOES NOT MOVE.

			Dividi			Dividing by 1000										
When we divide by 100 , each digit moves <u>two places</u> to the RIGHT									When we divide by 1,000, each digit moves three places to the RIGHT							
			65 ·	÷ 100 =							75 ÷ 3	1000 =75	,000			
Н		Т	Ø		1/	10 1/2	100	TTh	Th	Н	Т	Ø		1/10	1/100	1/100
		6	<u> </u>								7	5				
			0		e	5	5					0		0	7	5
				•												
			5603÷1	00 = 560),300						4576 ÷	1000 = 4	56 <i>,</i> 00	00		
TTh	Th	Н	Т	Ø		1/10	1/100	TTh	Th	н	Т	Ø		1/10	1/100	1/100
	5	6	0	3	•				4	5	7	6	•			
	5 6 . 0 3									$\rightarrow -$	\rightarrow —	→ 4		5	7	6

M1h: Can use place value to divide decimal numbers by 10, 100 or 1000

Thousands	Hundreds	Tens	Ones		Tenths	Hundredths	Thousandths
2	4	0	0	•			
	2	4	0	•			
		2	4	•			
			2	•	4		

Note: Move to the right to reduce the value.

The same rules apply to decimal numbers.

- ✓ When we divide by **10**, we are making the number **smaller** so each digit moves **1** place to the **right**.
- ✓ Thousands become Hundreds, Hundreds become Tens, Tens become Ones.
- ✓ When we are dividing by **100**, we are making the number 100 times **smaller** so each digit moves **2** places to the right.
- ✓ When we are dividing by **1000**, we are making the number 1000 times **smaller** so each digit moves **3** places to the right.

There will be occasions where you will need to add a 0 as a place	Т	Ø	•	1/10	1/100	1/1000	1/10000
holder for the answer to the calculation.	2	7	•	4			
When we divide a decimal number by 10, each digit moves one place to the right so $27.4 \div 10 = 2.74$		2	•	7	4		
When we divide a decimal number by 100, each digit moves two places to the right so $27.4 \div 100 = 0.274$		0	•	2	7	4	
When we divide a decimal number by 1000, each digit moves three places to the left so $27.4 \div 1000 = 0.0274$		0	•	0	2	7	4

Note: Dividing by 100 is the same as dividing by 10 and 10 again. Dividing by 1000 is the same as dividing by 10, 10 and 10 again or 100 and 10.

M1i: Can use negative numbers in context and calculate intervals across zero

Remember: Negative numbers are numbers smaller than zero. Positive numbers are numbers which are greater than zero.

This number line shows the numbers from -10 to 5. Remember on a horizontal line, that as we move to the left, the numbers get smaller.

We can see on the number line that -9 is smaller than -6.

We can use number lines to help us add and subtract with negative numbers. Let's look at some examples:

Using the number line below, work out the difference between -5 and -2

To find the difference between -5 and -2, we need to count how many steps it is from -5 to -2 (shown by the blue arrows).

We can see that we have gone up in 3 steps. Therefore:

The difference between -5 and -2 is 3.

It is important to remember that number lines are not always horizontal. You will sometimes see vertical number lines, especially when we are talking about temperatures. Think of them looking like thermometres. Let's look at some examples

During the day the temperature reached 5° C but at night the temperature dropped to -4° C. By how much did the temperature drop?

Number: Addition and Subtraction

M2a: Can use mental methods of computation for addition

Remember: w numbers invo	when faced with any calculation we should look at the plved and ask ourselves, 'can I do the calculation mentally or in	Remember: solving a calculation 'mentally' or 'in my head' does not mean that we cannot jot things down to help us such as the numbers involved or
my nead ?		
Number line	1) 49 + 18 (18 = 10 + 8) +10 +8	 Draw an empty number line and write the largest number on it. Add the multiples of 10 from the second number (19)
	(49) 59	67 • Add on the ones from the second number
Partitioning	2) $49 + 18$ 40 + 10 = 50 9 + 8 = 17 50 + 17 = 67 40 + 9	18 ✓ Partition the numbers into their place value groups i.e. Tens and Ones 10 + 8 ✓ Partition the numbers into their place value groups i.e. Tens and Ones ✓ Add the multiples of 10 together ✓ Add the ones together ✓ Total the two sums to calculate the final answer
Rounding and adjusting	3) 36 + 19 = +20	Look at the numbers: 19 is very close to 20- adding multiples of 10 is easier than adding 19. 20 = 19 + 1 therefore
	36 55	$\begin{array}{c} -1 \\ 56 \\ \hline \\ 56 \\ \hline \\ 56 \\ -1 = 55 \end{array}$

When adding more than two numbers it is important to look for numbers that make number bonds to ensure the calculation is accurate and quick

$$\mathbf{47 + 32 + 13 = \longrightarrow 40 + (30 + 10) = 80 \longrightarrow (7 + 3) + 2 = 12 \longrightarrow 80 + 12 = 92}$$

M2b: Can use mental methods of computation for subtraction

Remember: when faced with any calculation we should look at the	Remember: solving a calculation 'mentally' or 'in my head' does not mean
numbers involved and ask ourselves, 'can I do the calculation mentally or in	that we cannot jot things down to help us such as the numbers involved or
my head'?	a number line.

Number line	1) 43 - 29 = 14	(10+4)				✓ Place the smallest number on the number line
		+10	+4			✓ Place the largest number on the number
						✓ Count on in multiples of 10
		· · · ·		*		✓ Count on in ones
	29	39	4	13		✓ Total the 'jumps' to calculate the different
	Counting on (the	difference between the	two nu	mbers)		by counting on (10+4)
	We can also u	se a number line to help	us do t	this calculation by work	ing backwards.	Starting with 43, first subtract 3 which will makes 40
		-1 -10		-3		Then subtract 10 which makes 30
	(lastly subtract 1 to get to 29. Altogether, to get from 43 to 29 we have
	29	9 30		40 43		subtracted 3 , 10 and 1 . Therefore, 43 – 29 = 14
Partitioning	2) 95 - 13 =					✓ Partition and Subtract multiples of 10
		90 - 10 = <mark>80</mark>		95 - 10 = 85]	 ✓ Subtract ones ✓ Total the numbers
		5 – 3 = 2		85 – 3 = <mark>82</mark>		or
		So. 95 – 13 = 82	or	So. 95 – 13 = 82		 ✓ Leave the largest number ✓ Subtract multiples of 10
						✓ Subtract ones gives the answer
Rounding and	3) 87 – 19 =					19 + 1 = 20
adjusting	97 _ 10 - (97	/ _ 20 \ + 1				We can use this to subtract 20 and then
	(8) – 19 – (8)	- 20 J + 1 				adjust by adding the 1 back on after.
		67 + 1 = 66				This makes calculating the answer easier!

M2c: Can use efficient written methods of addition including column addition with more than 4 digits

Remember when we look at a calculation we should always ask:

- Can I do it in my head? With/without jottings?
- Do I need a written method?

Sometimes numbers are too large or there are too many numbers to calculate in our head. We need a reliable written method to help us.

Partitioning	Expanded Method	Short addition	Place value: What is the value of each digit
			here? For example:
728 + 546 =	728	728	
728 = 700 + 20 + 8	<u>+ 546</u>	<u>+ 546</u>	8 + 6 = 14 14 = 1 ten (10) and 4 ones
546 = <u>500 + 40 + 6</u>	14 Add the ones	<u> 1274 </u>	
<u>1200 +60 + 14</u>	60 Add the tens	1	Place the ten in the 'tens' column.
1200 + 60 + 14 = 1274	1200 Add the hundreds		40 + 20 + 10 = 70
	1274 Total the numbers		700 + 500 is 1200
so 728 + 546 = 1274			

Larger numbers		Decimal numbers					
Expanded Method	Short addition		Expanded Method	Short addition			
45367			58.39	58.39			
<u>+ 3145</u> <u>+ 3145</u>	45367	45367	<u>+ 9.85</u> <u>+ 9.85</u>	<u>+ 9.85</u>			
12	<u>+ 3145</u>	<u>+ 3145</u>	0.14	<u>68.24</u>			
4 <u>8512</u>	<u>48512</u>		68.24	11 1			
100	11		1.10				
400			17.00				
8000			<u>50.00</u>				
<u>+40000</u>			68.24				
48512							

M2d: Can use efficient written methods of subtraction including column subtraction

The expanded Method								
Use base	e 10 apparatus to help w	ith this strategy	5/13	400 ¹ 30	3 subtract 4 gives a negative			
758	700 50 8	8 subtract 7 = 1	<u>-374</u>	<u>300 70 4</u>	number so we need to take a 10 from the tens column.			
<u>-217</u>	<u>200 10 7</u>	50 subtract 10 = 40		<u>100+ 60+ 9=169</u>				
	<u>500 + 40 + 1 = 541</u>	700 hundred subtract 200 = 500	So 5/13 - 37/ - 16	a	30 subtract 70 gives a negative number so we need to take a			
		500 + 40 + 1= the difference between 758 and 217 _	50, 545 - 574 - 10		100 from the Hundreds column.			

Expanded Method	Short subtraction	Expanded Method	Short Subtraction
700 50 8	758	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$56^{14}5^{11}2^{1}3$
- $200 10 7$	<u>-217</u>		- <u>654</u>
500 + 40 + 1 = 541	<u>541</u>		<u>5869</u>

Short subtraction- further examples						
$58^{2}3^{1}56$ - <u>44092</u> <u>14264</u>	$ \begin{array}{r} 1 & {}^{7}8^{\prime}. {}^{1}6 & 6 \\ \underline{} & \underline{} & \underline{} & \underline{} \\ \end{array} $	7 5 ⁷ 8 ¹ 3 9 9 -2 5 5 7 3 3 5 0 2 6 6 6	⁴ 5∕ ¹ 6 7 .3 5 - <u>9 3 .2 5</u> <u>4 7 4. 10</u>			

M2e: Can add with decimals to two places (including money)

	Expan	ded	Metho	d		Short addition			Expanded Method			Short addition							
Т	Ø	•	1/10	1/100	Т	Ø	•	1/10	1/100	Т	Ø	•	1/10	1/100	Т	Ø		1/10	1/100
	7	•	3	6		7	•	3	6	3	6		7	4	3	6		7	4
	6	•	4	2		6	•	4	2	5	2	•	6	5	5	2		6	5
	0	-	0	8	1	3		7	8		0	-	0	9	8	9		3	9
	0	•	7	0							1		3	0		1			
1	3	•	0	0							8		0	0					
1	3	•	7	8						8	0		0	0					
		•								8	9	•	3	9					

Adding decimals (including money) is just the same as whole numbers. Just make sure that you line up the decimal points and fill in the numbers in the correct place value columns. Put **0s** as place value holders to stop you getting confused...easy as that!

M2f: Can subtract with decimals to two places (including money)

Number: Multiplication and Division

M3b: Can use tables and place value with multiples of 10

We can use multiplication facts to help us understand other times tables questions:

E.g. if we know that $6 \times 4 = 24$ we also know that $6 \times 40 = 240$ and that $60 \times 40 = 2400$

60 is ten times larger than 6 . Our answer will also be ten times larger.	240 is ten times larger than 24, so 4 x 60 = 240	2400 is ten times larger than 240 so 40 X 60 = 2400				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Th H T U $.10^{th}$ 100^{th} 2 4 0 0 2 4 0 0				

The same principles apply with division

6 x 8 = 48	If the question is how many 8s in 4	80 you can use	7 x 3 = 21	If the question is how many 7s in 210 you
$480 \div 6 = 80$	your knowledge of 6 x 6 – 48 to he	ip you ligure it out.	210÷7 =30	can use your knowledge of 3x7-21 to help
$480 \div 8 = 60$	48 is 10 x smaller than 480		210 <u>-</u> 3- 70	21 is 10x smaller than 210
	480 is 10 x larger than 48	480÷6 =80	210-3-70	210 is 10 x larger than 21
		480 ÷8 = 60		

3,500 ÷ 7 =	We know that $35 \div 7 = 5$. 3500 is 100 times larger than 35.	So the answer is: 3,500 ÷ 7 = 500
6,300 ÷ 90 =	We know that $63 \div 9 = 7.6300$ is 100 times larger than 63.	So the answer is: 6,300 ÷ 90 =70
490 ÷ 7 =	We know that $49 \div 7 = 7.6300$ is 100 times larger than 490.	So the answer is: 490 ÷ 7 =

M3c: Can use mental methods of computation for multiplication

	Doubling		Partitioning			
To double 96 we	Double a 3 digit	£8.90 = £8.00 + 90p	Multiply 35 by 6.	What is 134 x 6?	Multiply 4.8 by 7	
can partition and	number:		35 = 30 + 5	134 = 100 + 30 + 4	4.8 = 4 + 0.8	
multiply by 2:	174 = 100 + 70 + 4	£8.00 x 2 = £16.00				
96 = 90 + 6		90p x 2 = £1.80	30 x 6 = 180	100 x 6 = 600	4 x 7 = 28	
	100 x 2 = 200		5 x 6 = 30	30 x 6 = 180	0.8 x 7 = 5.6	
90 x 2 = 180	70 x 2 = 140			4 x 6 = 24		
6 x 2 = 12	4 x 2 = 8					
		$\pm 16.00 + \pm 1.80 =$		600 + 180 + 24 =		
180 + 12 = 192	200 + 140 + 8 = 348	£17.80	180 + 30 = 210	804	28 + 5.6 = 33.6	
so double 96 is 192	so double 174 is	so double £8.90 is	so 35 x 6 is 210	so 134 x 6 is 804	so 4.8 x 7 is 33.6	
	348	£17.80				

Using easier known facts								
x4- double and double again	x5 we can x10 and then ½ (\div 2)	x50 times by 100 then ½	x25 times by 100 then ¼ (÷4)					
24 x 4	32 x 5	32 x 50	25 x 18					
24 = 20 + 4	32 x 10 = 320	32 x 100 = 3200	18 x 100 = 1800					
20 x 2 = 40	320 ÷ 2 = 160	3200 ÷ 2 = 1600	1800 ÷ 4 = 450					
4 x 2 = 8								
so 24 x 4 is 96	so 32 x 5 = 160	so 32 x 50 = 1600	so 25 x 18 = 450					

M3d: Can use mental methods of computation for division

Halving a 2 digit number	Halving a 3 digit number	Halve a decimal
78	158	£7.60
We know that halving is the same as	100 = 100 + 50 + 8	$\pm 7.60 = \pm 7.00 + 60p$
dividing by 2. To halve 78 we can partition		
and divide by 2:	100 ÷ 2 = 50	$\pm 7.00 \div 2 = \pm 3.50$
78 = 70 + 8	50 ÷ 2 = 25	60p ÷ 2 = 30p
	$8 \div 2 = 4$	
70 ÷ 2 = 35		£3.50 + 30p = £3.80
8 ÷ 2 = 4	550 + 25 + 4 = 79 So half of 158 is 79	So half of £7.60 is £3.80
35 + 4 = 39 So half of 78 is 39		

	Using easier known facts							
÷4 (divide by 4)	÷ 8 (divide by 8)							
64÷4	264 ÷ 8	What is 84 ÷ 7?	What is 96 ÷ 6?					
64 = 60 + 4								
	Half of 264 is 132	We know that 10 multiplied by	96 = 60 + <mark>36</mark>					
60 ÷ 2 = 30	Light of 122 is 66	7 is 70. This fact helps us here.						
$4 \div 2 = 2$			60 ÷ 6 = 10					
	Half of 66 is 33	84 can be partitioned into 70	<mark>36</mark> ÷ 6 = 6					
32 = 30 + 2		and <mark>14</mark> .	_					
	$-264 \cdot 8 - 22$	84 = <mark>70 + 14</mark>	10 + 6 = 16					
30 ÷ 2 = 15	50 204 + 8 - 55	$70 \div 7 = 10$	So 96 ÷ 6 = 16					
$2 \div 2 = 1$		<mark>14</mark> ÷ 7 = 2						
15 + 1 = 16								
		10 + 2 = 12						
So 64 ÷ 4 = 16		So 84 ÷ 7 = 12						

M3e: Can use efficient written methods of multiplication including short and long multiplication

Multiplication is easier when you a) know your times tables facts and b) can set your work out correctly!

			Ex	panded Multip	olication		Short multiplication						
Th	H 2	T 6	Ø 8		SET your calculation our correctly to avoid errors		Гh Х	H 2	Т 6	Ø 8 4			
X			4		DON'T forget the value of the		1	0	7	2			
		3	2	= 4 x 8	digits when multiplying. 268=200+60+8			2	3	•			
	2	4	0	= 4 x 60									
	8	0	0	= 4 x 200	You MUST make sure that you multiple each digit in the top row (268) by the number in		Put 3	4 x 8 = in the T	32 's colum	n —	4 x 60 = 240 2 x 200= 800 Put the 2 in the H column > The 4 in the Ts column >		
1	0	7	2		the bottom row (4)	P	Put the	2 in the	Øs colu	mn	The 0 in the Ø column		

	Exp	anded	Multi	plicati	on			Expan	ded M	lultipli	cation	n		Expan	ded N	/lultip	licatio	า
HTh	TTh	Th	Н	Т	Ø		HTh	TTh	Th	Н	Т	Ø	HTh	TTh	Th	Н	Т	Ø
			5	6	3				6	1	3	4			3	6	0	4
Χ				2	7		Х				5	2	x				4	6
				2	1							8					2	4
			4	2	0						6	0						0
		3	5	0	0					2	0	0			3	6	0	0
				6	0			1	2	0	0	0		1	8	0	0	0
		1	2	0	0					2	0	0				1	6	0
	1	0	0	0	0				1	5	0	0					0	0
	1	5	2	0	1				5	0	0	0		2	4	0	0	0
		1	1			-	3	0	0	0	0	0	1	2	0	0	0	0
							3	1	8	9	6	8	1	6	5	7	8	4
	SI	nort M	ultipl	ication				Sho	rt Mul	tiplica	tion			Sho	ort Mu		ation	
HTh	TTh	Th	H	Т	Ø		HTh	TTh	Th	H	т	Ø				•		
			5	6	3				6	1	3	4	HTh	TTh	Th	Н	Т	Ø
Х				2	7		Х				5	2			3	6	0	4
		3	9	4	1			1	2	2	6	8	х				4	6
			4	2										2	1	6	2	4
	1	1	2	6	0		3	0	6	7	0	0			3		2	
		1	1	6				•	1	2			1	4	4	1	6	0
	1	5	2	0	1		3	1	8	9	6	8		2		1		
		1	1					_		-			1	6	5	7	8	4

M3f: Can use efficient written of division including short and long division

When we are dividing large numbers by a single digit we can use **<u>short division</u>**.

84 ÷ 6 = 14	1) We say, 'how many 6s in 8?' The answer is 1 so we put the 1 above the 8 because there is only 1 group of 6 in 8 with a remainder of 2.
1 4	2) 1 x 6 = 6 so we have a remainder of 2. We put this in front of the 4 to make 24.
	3) We say, 'how many 6s in 24?' The answer is 4. We put this above the 24 next to the 1.
6 8 21	4) 14 is our answer.
0 0 4	5) So, 84 ÷ 6 = 14
260 ÷4 = 65	1) We say, 'how many 4s in 0?' The answer is 0 so we put the 8 above the 8
	2) We move the 2 next to the 6 to make 26.
0 6 5	3) We say, 'how many 4s in 26?' The answer is 6. We put this above the 26 next to the 0. There is a remainder of 2
	4) We put the 2 next to the 0 to make 20
$1 2^{2} 6^{2} 0$	5) We say, 'how many 5s in 20?' The answer is 5. We put the 5 above the 2- next to the 6
4 2 0 0	6) 65 is our answer.
	7) So, 260 ÷ 4 = 65
954 ÷ 7= 136 r2	1) How many 7s in 9? The answer is 1 remainder 2. We put 1 above the 9 and a 2 in front of the 5.
	2) How many 7s in 25? The answer is 3 remainder 4. We put 3 above the 5 and a 4 in front of the 4.
1 3 6 r2	3) How many 7s in 44? The answer is 6 remainder 2. We put the 6 above the 4 and the remainder next to it.
	4) Our answer is 136 r 2.
7 9 25 41	5) So 954 ÷ 7 = 136 r 2 .
/ 5 5 4	

Remainders as fractions:

954 ÷ 7 = **136 r 2**.

We can write the remainder as a fraction. In this example it would be:

136 and $\frac{2}{7}$ because 7 is our divisor and we only have 2 out of a possible group of 7.

So 954 ÷ 7 = **136** $\frac{2}{7}$

Chunking: The Chunking Method as a step towards understanding long division

NOTE: To understand the chunking method, we must understand division as grouping as well as sharing. We can illustrate this using a simple division fact that we already know. Let's look at an example

We need to use our multiplication and division facts and be able to multiply by 10 and 100. We also need to subtract. We have to use a lot of skills to divide efficiently!

	Chui	nking	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	You want to subtract the largest amount you can each time, using number facts you can easily work out. It is easiest to work with multiples of 10 and 100. NOTE: keep the divisor lined up and the multiples lined up	$768 \div 32 =$ $32 768$ $-640 (20x32)$ 128 $-128 (4x32)$ 0 $20 + 4 = 24$	Division is complicated. It is always a good idea to estimate first. Here we could partition 768 into 700 and 68. There are roughly 3 groups of 32 in 100, so we would have 7 lots of 3 in 700. This is 21 plus an extra 2 groups from the 68. We should expect an answer of roughly 23.
Therefore, 468 ÷ 3 = 156	This will help with efficient calculations at the end	Therefore, 768 ÷ 32 = 24	

	Long division	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 We say 24 divided into 6 which is not an easy division so we say 24 divided into 65. 65 divided by 24. The answer is 2 with a remainder. To calculate the remainder we need to work out what is left if you subtract 2 groups of 24 from 65. This time we put the 2 above the 5 and write two groups of 24 beneath the 65 so 48 is written beneath 65. We then subtract 48 from 65. The remainder of 17 is written below the 48. 	2 2 4 6 5 3 4 8 1 7 3 We also bring down the 3 from the calculation above.
We then divide 173 by 24 which is 7 with a remainder. To calculate the remainder, we subtract 7 groups of 24 from 173. We put the 7 at the top next to the 2 and write the 7 groups of 24 beneath	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	So 653 ÷ 24 = 27 r 5
the 173. We then subtract 168 from 173. The remainder of 5 is written next to the answer of 27	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chunking or long division????

M3g: Can multiply a simple decimal by a single digit

M3i: Can identify factors and common factors

Let us see if we can find two numbers which multiply together to make 6:

We know that 2 multiplied by 3 makes 6. Therefore, we say that 2 and 3 are **FACTORS** of 6. But $1 \times 6 = 6$ as well so 1 and 6 are also **FACTORS** of 6 It is best if we work systematically to find factor **pairs**.

herefore the factors of 24 are: 1,2, 3, 4, 6, 8, 12 and 24 Common Factors of both 24 and 18 are: 1, 2, 3 and 6 Lowest common factor (LCM) is 2 (we discount 1) Highest common factor (HCF) is 6

M3j: Can recognise and describe square numbers

We say that 25 is a SQUARE number because both factors of 25 are the same (5x5).

If you multiply any number by itself, the answer you get will be a square number.

Let's look at some more examples of square numbers:

1 x 1	2 x 2	3 x 3	4 x 4		
The first square number is 1. We know this because 1 x 1 = 1	2 x 2 = 4 therefore, we know that 4 is a square number	3 x 3 = 9 therefore, we know that 9 is a square number	4 x 4 = 16 therefore, we know that 16 is a square number		

	The firs	t 10 sq	uare nu	mbers	are:					
1	4	9	16	25	36	49	64	81	100	You need to learn and recognise these numbers
1²	2²	3²	4 ²	5²	6²	7²	8²	9²	10²	It is also important to know the notation used when working with square numbers.

We say that 5 squared is 25 because $5 \times 5 = 25$.

In mathematics we write this as $5^2 = 25$.

M3k: Can recognise and identify prime numbers

Remember: A <u>prime number</u> is a number that has only 2 factors (1 and itself). **For example** 13 is a prime number as the only factors of 13 are 1 and 13.

<u>Prime factor</u>: a factor of a number that also happens to be a prime number. For example 7 is a prime factor of 21 because 7 is a factor of 21 and 7 is a prime number. Its only factors are 1 and 7.

We should know and recognise all the **prime numbers up to 20**. These are:

2 (the only even prime number)	3	5	7	11	13	17	19

M5b: Can use common factors to simplify fractions

When fractions are equivalent we know that the equivalent fractions have the same value. For example if I had $\frac{1}{2}$ of a chocolate bar or $\frac{4}{8}$ of the same chocolate bar, I would have exactly the same amount of chocolate.

What do equivalent fractions have in common? We know that fractions are closely linked to division. $\frac{1}{2}$ tells us that something has been divided into 2 equal parts and we have 1 out of 2 equal parts. $\frac{4}{8}$ tells us that something has been divided into 8 equal parts and we have 4 out of 8 equal parts (equal to $\frac{1}{2}$).

Remember: A factor is a number that divides into another number with no remainders. For example 4 is a factor of 12. A common factor is a factor that two larger numbers have in common. For example 4 is a factor of 12 and 16 because 4 divides into 12 and also divides into 16. To simplify a fraction, we must find a factor that the numerator and denominator have in common. Let's look at an example:

1. Simplify $\frac{4}{8}$

The numerator is 4 and the denominator is 8. To simplify this fraction we must find a common factor. Both 4 and 8 have the factor 4 in common. We must now divide both the numerator and the denominator by 4.

$\frac{4\div 4}{8\div 4} = \frac{1}{2}$	$\frac{4}{8}$ can be simplified to $\frac{1}{2}$.	The fraction is now in its simplest form. A fraction can be put in its simplest form and be simplified. To simplify a fraction in one
Both fractions are equivalent. (See fraction wall)		step, it is necessary to find the largest common factor.

2. Simplify $\frac{5}{20}$

$\frac{5\div 5}{20\div 5} = \frac{1}{4}$	$\frac{5}{20}$ can be simplified to $\frac{1}{4}$	 Look for the largest common factor of 5 and 20. 5 is the largest common factor of 5 and 20. Divide both 5 and 20 by 5
Both fractions are equivalent.		S) Divide both S and 20 by S

3. Simplify $\frac{18}{36}$

$\frac{18 \div 9}{36 \div 9}$	$=\frac{2}{3}$	$\frac{18}{36}$ can be simplified to $\frac{2}{3}$	 Look for the largest common factor of 18 and 36. 9 is the largest common factor of 18 and 36. Divide both 18 and 36 by 9.
E	Both fractio	ns are equivalent.	
	(See fr	action wall)	
F	lint: know	ing your multiplication and	division facts will help you simplify fractions quickly and efficiently!

M5c: Can compare and order fractions

Put the following	fractions	in order	from smallest to largest:	Clearly, the correct order for these fractions is:			
	4	2	3	2	3	4	
	5	5	5	5	5	5	
hich is the smallest f = $\frac{?}{12}$	Fraction? $\frac{3}{4}$	or $\frac{2}{3}$?	Before we can compare these To do this, we need to find the multiple is the lowest number What is the lowest number tha each fraction with 12 as a denor	fractions, we must make sure <u>lowest common multiple</u> of a r that both numbers go into. common multiple of 3 a t these numbers go into? The minator.	they both Il the denc In this case nd 4. answer is 3	have a common denominato ominators. The lowest commo e, we need to find the lowest 12. We now need to write	
$\frac{3}{4} = \frac{?}{12}$ To wh	find an equ at we have Whatever	ivalent fra multiplied we have n	ction, we need to look at the denominator by to get nultiplied the denominator $\frac{3}{4} =$	$\frac{3}{4} = \frac{9}{12}$]		

Order the following fractions from smallest to largest:

5	1	1	3	1
16	8	2	4	4

Before we can compare these fractions, we must make sure they all have a common denominator. To do this, we need to find the **lowest common multiple** of all the denominators. The lowest common multiple is the lowest number that all the other numbers go into. In this case, we need to find the lowest common multiple of **16**, **8**, **2**, **and 4**. What is the lowest number that all of these numbers go into? The answer is 16. We now need to write each fraction with 16 as a denominator. (The first fraction already has a denominator of 16.)

$\frac{1}{8} = \frac{?}{16}$	$\frac{1}{2} = \frac{?}{16}$	$\frac{3}{4} = \frac{?}{16}$	$\frac{1}{4}=\frac{?}{16}$
When finding equ	vivalent fractions, we multiply or divide	e the numerator and denominator by t	he same number.
$\frac{x^2}{\frac{1}{8} = \frac{?}{16}}$	$\frac{x 8}{\frac{1}{2} = \frac{8}{16}}$	$x 4$ $\frac{3}{4} = \frac{12}{16}$ $x 4$	$\frac{x}{4} = \frac{4}{16}$
$\frac{1}{8} = \frac{2}{16}$ Now that they have a common denom	$\frac{1}{2} = \frac{8}{16}$ inator, we can now compare the fracti	$\frac{3}{4} = \frac{12}{16}$	$\frac{1}{4} = \frac{4}{16}$

2	4	5	8	12
16	16	16	16	16

Don't forget to give the original fractions in your answer:

The fractions in order from smallest to largest are:

$$\frac{1}{8} \quad \frac{1}{4} \quad \frac{5}{16} \quad \frac{1}{2} \quad \frac{3}{4}$$

M5d: Can add and subtract fractions

When fractions have a common denominator, it is straightforward to compare them and also to add and subtract them. For example,

Sometimes fractions don't have a common denominator. If this is the case we must first convert the fractions so that they do have a common denominator. We CANNOT add fractions which do not have the same denominator.

Before we can add these fractions, we must make sure they have a common denominator. To do this, we need to find the **lowest common multiple** of the denominators. The lowest common multiple is the lowest number that both numbers go into.

M5e: Can multiply fractions by whole numbers (fractions of quantities)

We can think of fractions in two ways: as a **number** and as an **operator**. When we place fractions on a number line and think of them as part of our number system we are thinking of fractions as **numbers**.

But fractions can also be used as **operators**. This requires us to use the fraction to carry out a calculation. Let's look at the example below:

We can find $\frac{3}{4}$ of a set of objects. Look at the visual example below:

In this example, the fraction $\frac{3}{4}$ is being used as an operator not a number because we have to find $\frac{3}{4}$ of a set of objects. We have to carry out an operation To multiply a whole number by a fraction, you need to use the fraction as an operator. This means reading the multiplication sign as a fraction <u>of</u> a number. In the example left, $\frac{3}{4}$ of 12 is the same as $\frac{3}{4} \times 12$			
$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $			
$\frac{4}{4} \times 12 = \frac{4}{4} \text{ of } 12 = 12$			

As a number sentence. For example, 12 grapes are shared equally between 4 friends. Each child will get:

$$\frac{1}{4} \times 12 = 12 \div 4 = 3$$
 grapes $\frac{1}{4} \times 12 = 3$

Using the bar model

$$So \frac{1}{4} \times 12 = 3$$

What about $\frac{2}{5} \times 20$?

$\frac{2}{5}$ of 20 is 8	Using the Bar Method:	•		20		→
	$\frac{2}{5} \times 20$					
		<		20		
	To find $\frac{2}{5}$ you need to divide the bar into 5 pieces.	4	4	4	4	4
	We can see that dividing the bar into 5 means each section is $20 \div 5 = 4$.	1	<u> </u>			γ
	If each section represents 4, then two sections is $2 \times 4 = 8$	3. Therefore, $\frac{2}{5}$	x 20 = 8			8

M5f: Can multiply pairs of fractions, writing the answer in its simplest form

Remember: Fractions can be used as numbers or operators.	Remember: Finding $\frac{1}{4}$ of something is the same as dividing by 4.
When multiplying two fractions, use one of the fractions as an operator.	
This means you are finding a fraction of a fraction	

L		L
-	X	—
2	~	4

.

This can be read as $\frac{1}{2}$ of a quarter, using one of the fractions as an operator.

	$\frac{1}{4} X \frac{1}{3}$ This can	be read as 1/4 of a third.
--	--------------------------------------	----------------------------

This method can still be used when the numerator is greater than one.

$\frac{1}{2}X\frac{3}{4}$	This can be read as $\frac{1}{2}$ of three quarters
2 7	

Written method

If you understand how to visually multiply fractions together, you have probably worked out the method for multiplying fractions together. To multiply fractions the two numerators are multiplied together and the two denominators are multiplied together.

$\frac{1}{2} \times \frac{1}{4}$	$\frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$	$\frac{1}{5} \times \frac{1}{4}$	$\frac{1}{5} \times \frac{1}{4} = \frac{1}{20}$	$\frac{2}{3} \times \frac{1}{4}$	$ \begin{array}{c} 2 \times 1 = 2 = 1 \\ 3 4 12 6 \end{array} $

How do we calculate without pictures?	$2\frac{2}{3} = \frac{8}{3}$ $2 = \frac{6}{3} + \frac{2}{3}$ so the calculation is $\frac{6}{3}$	$+\frac{2}{3}=\frac{8}{3}$
Write $3\frac{2}{7}$ as an improper fraction.	Start by writing 3 as sevenths \checkmark 1 whole one = 7 sevenths \checkmark 2 whole ones = 14 sevenths \checkmark 3 whole ones = 21 sevenths Therefore, $3 = \frac{21}{7}$	If $3 = \frac{21}{7}$, then $3\frac{2}{7} = \frac{21}{7} + \frac{2}{7} = \frac{23}{7}$ $3\frac{2}{7} = \frac{23}{7}$

M5j: Can read and write decimal numbers as fractions

Remember place value

In order to read and write decimal numbers as fractions, it is vital that you remember and understand the value of digits in numbers.

thousands	hundreds	tens	ones	tenths	hundredths	thousandths	
				1	1	1	
				$\overline{10}$	100	$\overline{1000}$	

The numbers get **smaller** as the chart moves to the **right**, so thousands are the biggest numbers and thousandths are the smallest numbers on this chart.

The chart mirrors itself in terms of the names of the columns with tens on the left of the decimal point and tenths on the right, then hundreds and hundredths etc.

Just as ten ones are 1 ten and 10 tens are 1 hundred, so 10 tenths are 1 one and 10 hundredths are 1 tenth.

If I want to read 0.1, I can put the number into the chart.

thousands	hundreds	tens	ones	tenths	hundredths	thousandths	
				1	1	1	
				$\overline{10}$	100	1000	
			0	1			So, 0.1 =

0.4	=	four tenths	=	$\frac{4}{10} = \frac{2}{5}$	0.7	=	seven tenths	=	7/10
0.5	=	five tenths	=	$\frac{5}{10} = \frac{1}{2}$	0.8	=	eight tenths	=	8/10 = 4/5
0.6	=	six tenths	=	$\frac{6}{10} = \frac{3}{5}$	0.9	=	nine tenths	=	9/10

What about 0.01

We can keep counting up in hundredths. There are some well known decimal hundredths that convert to fractions.

0.10 = ten hundredths
$$= \frac{10}{100} = \frac{1}{10}$$
0.25 $= \frac{23}{100} = \frac{3}{4}$ (one quarter)0.75 $= \frac{23}{100} = \frac{3}{4}$ (three quarters)Under down of the construction of the const

Remember: A percentage represents the number of parts out of 100. For example, 76% means 76 out of 100 and 100% means 100 out of 100 (or a whole). Percentages can also be written as fractions and decimals.

Equivalence	50% = 25% = 75% =	50 100 25 100 75 100	= = =	$ \frac{1}{2} $ $ \frac{1}{4} $ $ \frac{3}{4} $	= = =	0.5 0.25 0.75			
Number line	0		$\frac{25\%}{100} = \frac{1}{4}$		50% $\frac{50}{100} = \frac{1}{2}$	$\frac{75\%}{100} = \frac{3}{4}$	100% 		
Pictorial	10 10 V squ	$\% = \frac{1}{1}$	$\frac{10}{00} = \frac{1}{10}$ see in thi $0/100 =$		0.1 gram that . We can a 10 ro	10 squares are s also see that 1 r ws (1/10 = 10%)	shaded out of a o ow is shaded ou	total of 100 t of a total of	
4 out of Using known ec	10 blocks are $\frac{4}{10} = \frac{40}{100} =$ uivalent fact:	e shade 40% s to heli	d o o you cal	culat	2 o	ut of 10 blocks a $\frac{2}{10} = \frac{20}{100} =$ ges. You must lo	re shaded. 20% earn the following	✓ ✓ ✓ ✓ Mg facts:	Count how many squares there are in total- this is your denominator Count how many squares are shaded- this is your numerator Look at the fraction- is there an equivalent that would support your calculation? Convert to a decimal or percentage- what is the question asking you?

5% =

5%= 6.25

Half of 12 = 6

Half of 0.5= 0.25

Half of 3 = 1.5

5% =1.9

M5I: Can recognise simple equivalence between fractions, decimals and percentages

To recognise simple equivalences between fraction, decimals and percentages we must first remember that equivalent means equal to.

Fractions, decimals and percentages are all ways of representing parts of a whole.

Fractions	Decimals	Percentages	Fractions	Decimals	Percentages
¹ / ₂	0.50	50%	¹ / ₆	0.16	16 ² / ₃ %
1/ ₃	0.33	33 ¹ / ₃	¹ / ₆	0.125	12 ¹ / ₂ %
² / ₃	0.66	66 ² / ₃	³ / ₈	0.375	37 ¹ / ₂ %
1/4	0.25	25%	⁵ /8	0.625	62 ¹ / ₂ %
3/4	0.75	75%	⁷ / ₈	0.875	87 ¹ / ₂ %
¹ / ₅	0.20	20%	¹ / ₁₀	0.10	10%
² / ₅	0.40	40%	³ / ₁₀	0.30	30%
³ / ₅	0.60	60%	⁵ / ₁₀	0.5	50%
4/ ₅	0.80	80%	⁹ / ₁₀	0.9	90%